The SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium-indium eutectic junctions.

نویسندگان

  • William F Reus
  • Martin M Thuo
  • Nathan D Shapiro
  • Christian A Nijhuis
  • George M Whitesides
چکیده

The liquid-metal eutectic of gallium and indium (EGaIn) is a useful electrode for making soft electrical contacts to self-assembled monolayers (SAMs). This electrode has, however, one feature whose effect on charge transport has been incompletely understood: a thin (approximately 0.7 nm) film-consisting primarily of Ga(2)O(3)-that covers its surface when in contact with air. SAMs that rectify current have been measured using this electrode in Ag(TS)-SAM//Ga(2)O(3)/EGaIn (where Ag(TS) = template-stripped Ag surface) junctions. This paper organizes evidence, both published and unpublished, showing that the molecular structure of the SAM (specifically, the presence of an accessible molecular orbital asymmetrically located within the SAM), not the difference between the electrodes or the characteristics of the Ga(2)O(3) film, causes the observed rectification. By examining and ruling out potential mechanisms of rectification that rely either on the Ga(2)O(3) film or on the asymmetry of the electrodes, this paper demonstrates that the structure of the SAM dominates charge transport through Ag(TS)-SAM//Ga(2)O(3)/EGaIn junctions, and that the electrical characteristics of the Ga(2)O(3) film have a negligible effect on these measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical Resistance of Ag−S(CH2)n−1CH3//Ga2O3/EGaIn Tunneling Junctions

Tunneling junctions having the structure Ag−S(CH2)n−1CH3// Ga2O3/EGaIn allow physical−organic studies of charge transport across selfassembled monolayers (SAMs). In ambient conditions, the surface of the liquid metal electrode (EGaIn, 75.5 wt % Ga, 24.5 wt % In, mp 15.7 °C) oxidizes and adsorbs―like other high-energy surfaces―adventitious contaminants. The interface between the EGaIn and the SA...

متن کامل

Comparison of SAM-Based Junctions with Ga2O3/EGaIn Top Electrodes to Other Large-Area Tunneling Junctions

This paper compares the J(V) characteristics obtained for self-assembled monolayer (SAM)-based tunneling junctions with top electrodes of the liquid eutectic of gallium and indium (EGaIn) fabricated using two different procedures: (i) stabilizing the EGaIn electrode in PDMS microchannels and (ii) suspending the EGaIn electrode from the tip of a syringe. These two geometries of the EGaIn electro...

متن کامل

Electrical Resistance of AgTS–S(CH2)n−1CH3//Ga2O3/EGaIn Tunneling Junctions

Tunneling junctions having the structure Ag−S(CH2)n−1CH3// Ga2O3/EGaIn allow physical−organic studies of charge transport across selfassembled monolayers (SAMs). In ambient conditions, the surface of the liquid metal electrode (EGaIn, 75.5 wt % Ga, 24.5 wt % In, mp 15.7 °C) oxidizes and adsorbs―like other high-energy surfaces―adventitious contaminants. The interface between the EGaIn and the SA...

متن کامل

The Rate of Charge Tunneling Is Insensitive to Polar Terminal Groups in Self-Assembled Monolayers in AgS(CH2)nM(CH2)mT//Ga2O3/EGaIn Junctions

This paper describes a physical-organic study of the effect of uncharged, polar, functional groups on the rate of charge transport by tunneling across selfassembled monolayer (SAM)-based large-area junctions of the form AgS(CH2)nM(CH2)mT//Ga2O3/EGaIn. Here Ag is a template-stripped silver substrate, -Mand -T are “middle” and “terminal” functional groups, and EGaIn is eutectic gallium−indium all...

متن کامل

Replacing −CH2CH2− with −CONH− Does Not Significantly Change Rates of Charge Transport through Ag-SAM//Ga2O3/EGaIn Junctions

This paper describes physical-organic studies of charge transport by tunneling through self-assembled monolayers (SAMs), based on systematic variations of the structure of the molecules constituting the SAM. Replacing a −CH2CH2− group with a −CONH− group changes the dipole moment and polarizability of a portion of the molecule and has, in principle, the potential to change the rate of charge tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 6 6  شماره 

صفحات  -

تاریخ انتشار 2012